1. Ensure the hostname entry is a FQDN or alias. It can not be an IP address if MS Exchange is to be managed through this connector, due to conflict with Kerberos authentication and IP addresses. If the object was created with an IP address, it may be changed via Jxplorer for two (2) attributes: eTADSprimaryServer and eTADSServerName.

2. General Information on the ADS Endpoint Logging Tab and where this information is stored. Only two (2) the Destination have value with current deployment, e.g. Text File & System Log (MS Windows Event viewer) for Active Directory (ADS). The “Text File” will output data to two (2) files: jcs\logs\ADS\<endpoint-name>.log and ccs\logs\ADS\<endpoint-name>.log

3. Use the MS Event Viewer on the ADS Domain Controller, or use the MS Event Viewer to remotely view the transactions on the remote ADS DC. Select the event codes of 627,628,4723,4724,4738 to start with. Other codes may be added that are useful. Ref: https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/appendix-l–events-to-monitor

4. Additionally, the User ID may be in one of three (3) formats: UPN (serviceid@exchange.lab), NT ( domain\serviceid ), LDAP DN ( cn=serviceid,ou=people,dc=exchange,dc=lab). We recommend UPN or NT format to allow the embedded API features for MS Exchange powershell management to correctly function. If the ID is to be changed, a password update must be done as well, since the User ID is part of the seed for the encrypted password for the service ID to be stored in CA Directory on the ADS endpoint object.

5. SASL versus TLS authentication checkboxes. We can tested the ADS authentication availability using ldapsearch binary. Ports used by Active Directory for authentication by client tools, https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/config-firewall-for-ad-domains-and-trusts

Note: SASL is encrypted traffic. If wireshark is used to intercept the traffic, the service ID may be seen during initial authentication, but NOT the password nor the payload data.

Notes on SASL validation for Active Directory. {Pro: No need to worry about TLS certificates rotation on client connections – all TLS is managed by the server}

:: Search ADS / LDAP store what is offered for SASL (use -x for simple connection)
ldapsearch -x -h dc2016.exchange.lab -p 389 -b “” -LLL -s base supportedSASLMechanisms

EXAMPLE OUTPUT

[root@oracle ~]# ldapsearch -x -h dc2016.exchange.lab -p 389 -b “” -LLL -s base supportedSASLMechanisms
dn:
supportedSASLMechanisms: GSSAPI
supportedSASLMechanisms: GSS-SPNEGO
supportedSASLMechanisms: EXTERNAL
supportedSASLMechanisms: DIGEST-MD5

:: On Linux OS, execute rpm -qa to search for SASL installed modules/libraries.
rpm -qa | grep cyrus

EXAMPLE OUTPUT

[root@oracle ~]# rpm -qa | grep cyrus
cyrus-sasl-gssapi-2.1.26-23.el7.x86_64
cyrus-sasl-lib-2.1.26-23.el7.x86_64
cyrus-sasl-md5-2.1.26-23.el7.x86_64

:: On Linux OS, install missing SASL libraries & ldapsearch (ldap-client)
yum -y install cyrus-sasl-md5 cyrus-sasl-gssapi openldap-clients

TESTING DIFFERING AUTHENTICATION MECHANISMS #### (may remove -d9 debug switch to view cleaner results)

TLS

LDAPTLS_REQCERT=never ldapsearch -d9 -LLL -H ldaps://dc2016.exchange.lab:636 -w CAdemo123 -D “CN=Administrator,CN=Users,DC=exchange,DC=lab” -b “CN=Administrator,CN=Users,DC=exchange,DC=lab” -s base userAccountControl

Start TLS

LDAPTLS_REQCERT=never ldapsearch -d9 -Z -LLL -H ldap://dc2016.exchange.lab:389 -w CAdemo123 -D “CN=Administrator,CN=Users,DC=exchange,DC=lab” -b “CN=Administrator,CN=Users,DC=exchange,DC=lab” -s base userAccountControl

Digest-MD5

ldapsearch -d9 -LLL -H ldap://dc2016.exchange.lab -w CAdemo123 -Y DIGEST-MD5 -U Administrator -b “CN=Administrator,CN=Users,DC=exchange,DC=lab” -s base userAccountControl

Kerberos (GSS)

ldapsearch -d9 -LLL -H ldap://dc2016.exchange.lab -w CAdemo123 -Y GSSAPI -U Administrator -b “CN=Administrator,CN=Users,DC=exchange,DC=lab” -s base userAccountControl

6. TCP/UDP Ports required for Active Directory Endpoint management per CA Documentation https://techdocs.broadcom.com/us/en/symantec-security-software/identity-security/identity-manager/14-4/reference/default-ports-for-ca-identity-manager-and-associated-components.html

SASL appears to connect on TCP 636 briefly, then use TCP 389 extensively. Other ports are 80 (Service), 135 (lsass.exe for home folders), 6405 (lsass.exe). If Kerberos authentication is defined for the service ID, then other ports will be used, e.g. 3268/3269. TCP 4104/4105 are for the legacy CAM/CAFT agents (typically not used any more).

Recommendation: Add these TCP Ports to any Firewall between the IM JCS/CCS Server and the Active Directory Domain Controllers to improve performance and avoid time-out delays.

MS Active Directory References on SASL.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/989e0748-0953-455d-9d37-d08dfbf3998b

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/a98c1f56-8246-4212-8c4e-d92da1a9563b

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: